This book presents the definitive account of the applications of this algebra to the surgery classification of topological manifolds. The central result is the identification of a manifold structure in the homotopy type of a Poincar duality space with a local quadratic structure in the chain homotopy type of the universal cover. The difference between the homotopy types of manifolds and Poincar duality spaces is identified with the fibre of the algebraic L-theory assembly map, which passes from local to global quadratic duality structures on chain complexes. The algebraic L-theory assembly map is used to give a purely algebraic formulation of the Novikov conjectures on the homotopy invariance of the higher signatures; any other formulation necessarily factors through this one.
ThriftBooks sells millions of used books at the lowest everyday prices. We personally assess every book's quality and offer rare, out-of-print treasures. We deliver the joy of reading in recyclable packaging with free standard shipping on US orders over $15. ThriftBooks.com. Read more. Spend less.