Skip to content
Scan a barcode
Scan
Paperback Learning with Submodular Functions: A Convex Optimization Perspective Book

ISBN: 1601987560

ISBN13: 9781601987563

Learning with Submodular Functions: A Convex Optimization Perspective

Submodular functions are relevant to machine learning for at least two reasons: (1) some problems may be expressed directly as the optimization of submodular functions, and (2) the Lov sz extension of submodular functions provides a useful set of regularization functions for supervised and unsupervised learning. In Learning with Submodular Functions: A Convex Optimization Perspective, the theory of submodular functions is presented in a self-contained way from a convex analysis perspective, presenting tight links between certain polyhedra, combinatorial optimization and convex optimization problems. In particular, it describes how submodular function minimization is equivalent to solving a wide variety of convex optimization problems. This allows the derivation of new efficient algorithms for approximate and exact submodular function minimization with theoretical guarantees and good practical performance. By listing many examples of submodular functions, it reviews various applications to machine learning, such as clustering, experimental design, sensor placement, graphical model structure learning or subset selection, as well as a family of structured sparsity-inducing norms that can be derived and used from submodular functions. Learning with Submodular Functions: A Convex Optimization Perspective is an ideal reference for researchers, scientists, or engineers with an interest in applying submodular functions to machine learning problems.

Recommended

Format: Paperback

Condition: New

$91.20
Save $7.80!
List Price $99.00
50 Available
Ships within 2-3 days

Customer Reviews

0 rating
Copyright © 2025 Thriftbooks.com Terms of Use | Privacy Policy | Do Not Sell/Share My Personal Information | Cookie Policy | Cookie Preferences | Accessibility Statement
ThriftBooks ® and the ThriftBooks ® logo are registered trademarks of Thrift Books Global, LLC
GoDaddy Verified and Secured